

2nd Int. Conference on "Physics for Sustainable Development & Technology" ICPSDT – 2017

1

Green synthesis of CeO₂ **nanoparticles using** *Artocarpus heterophyllus* **leaf extract for photocatalytic activity**

Presented By-Manifa Noor Department of Glass and Ceramic Engineering Bangladesh University of Engineering and Technology, BUET Co-authors- M.A. Al Mamun, A.K.M. Atique Ullah, M.A. Matin, F. Islam, S. Haque and M.A. Hakim **Technical Session-III (A) Nanoscience 11 November, 2017**

Contents

CeO2- a Promising Material

Structure : Face-centered cubic

Properties :

✓ High reactivity
✓ Unique UV absorption ability
✓ High temperature stability
✓ High hardness

Common synthesis methods :

- ✓ Sol–gel ,hydrothermal, sonochemical
- ✓ Flame spray pyrolysis
- ✓ Reverse micelle route
- ✓ Combustion
- Complex thermodecomposition method

Why Green Synthesis

Environment friendly

Experimental Procedure

Step-1 Preparation of leaf extract

Step-2 Addition of leaf extract in Ce(NO3)3.6H2O solution and heating it at 80 °C with continuous stirring until it becomes dry and then kept at oven at 120 °C for 12 hours

Step-3 Washing and grinding of dried powder

Step-4 Heat treatment for 3 hours at different temperatures

Step-5 Grinding after heat treatment before characterization

Step-6 Repeating step 2 varying precursor and leaf extract concentration 5

Results and Discussions- DSC Analysis

Fig.1: DSC and TGA graphs for (a) 0.01M, (b) 0.025M, (c) 0.055M and (d) 0.1M precursor concentration obtain at 10 °C/min heating rate

Structural Analysis- XRD

Fig.2: PXRD patterns of all samples in as prepared and at 250 °C annealed condition with precursor to leaf extract ratio of 1:1, 1:2, 1:3 and 1:4 respectively

Structural Analysis- XRD

Fig.3: PXRD patterns for (a) 0.01M, (b) 0.025M, (c) 0.055M and (d) 0.1M precursor concentration samples after heat treatment at 700, 800 and 800 °C

Structural Analysis- Lattice

Table 1: Lattice Parameter Calculation for Cubic CeO2 (ICDD 01 – 078 – 5328) from Nelson-Riley plot

Temp (°C)	Conc. (M)	a _{NR} Nelson – Riley (A°)	a _D Database (A°)	Δ a = a _{NR-} a _D (A°)
	0.01	5.4		- 0.01
900	0.025	5.4	5.41	- 0.01
	0.055	5.4		- 0.01
	0.1	5.4		- 0.004

Negligible difference between standard & our observed value

Structural Analysis- Crystal Size

Crystal size of the nanoparticles is determined by using Scherrer formula- $D = \frac{k\lambda}{\beta cos\theta}$ Where, D = Crystallite size (in nm) = FWHM of hkl peak (inradians)K = 0.9 (For spherical shape) $<math>\theta$ = Bragg angles (in degrees)

λ= 0.15405980 nm

Williamson-Hall method

 $\beta\cos\theta = K\lambda/D + 4\varepsilon\sin\theta$

Structural Analysis- Crystal Size

Table 3: Crystallite Size of the samples annealed 900 °C calculated from Schererequation, modified Scherer equation and Williamson-Hall method

Temp (°C)	Precursor Concentration (M)	Crystallite Size Scherrer for (111) only (nm)	Crystallite Size Williamson – Hall (nm)
	0.01	27	20
900	0.025	25	21
	0.055	29	14
	0.1	29	21

Microstructure Analysis

Microstructure Analysis

View000

4.837

Ce L Total 51.12

100.00

0.45

8.97

100.00

Presence of Phosphorus (P) is confirmed by EDX results.

Fig.5: EDX analysis of 0.1M sample annealed at 900 °C

Magnetic Property Analysis

Fig.6: Magnetic property of 0.1M sample annealed at 400 ° C and 900 °C

Higher magnetization obtained at higher temperature

Optical Property Analysis

Fig.7 : UV-Vis reflectance spectra of all samples annealed at 500 °C and 900 °C

Reflectance/absorption range increases with the increasing annealing temperature

Fig.8 : Band gap of all samples at 900 °C

Table 4: Band gap of all samples annealed at 900 °C determined by Kubelka-Munk Plot

Precursor concentration	Band gap (eV)	_
		V
0.01M	2.3	√ Sy
0.025 M	2.4	√ p
0.055 M	1.9	
0.1 M	2.2	

✓ Band gap of bulk CeO2 3.3 eV
✓ Band gap obtained by green
synthesis is lower
✓ Enhanced photocatalytic
property

Photocatalytic Activity

UV-vis spectra of $30\mu M$ MB solution before and after charging CeO₂ nanoparticles Pseudo first order kinetic model for the degradation of MB dye using CeO2 nanoparticles

Slow Degradation Rate due to Absence of O₂ Vacancies in CeO₂ which were grabbed by CePO₄

Conclusions

- ✓ Use of abundant leaf as reducing agent to avoid toxic chemicals
- ✓ Structural analysis of the synthesized samples
- ✓ Particle size 20 nm after annealing at 900 °C
- ✓ Better optical property obtained
- ✓ Magnetic property observed
- ✓ Better photocatalytic property attained

References

[1] Yahiro et al. "High Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte" J. Electrochem. Soc. 135, 2077 (1988)

[2] Noriya et al. "Performance of a carbon monoxide sensor based on zirconia-doped ceria" Sens. Actuators B 87, 95 (2002).

[3] Yu et al. Size-dependent optical properties of nanocrystalline CeO 2: Er obtained by combustion synthesis Phys. Chem. Chem. Phys. 3, 5266 (2001)

[4] Bekyarova et al. CO oxidation on Pd/CeO2–ZrO2 catalysts Catal. Today 45, 179 (1998)

[5] Cehn et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142 (2006).